Mouse mesenchymal stem cells can support human hematopoiesis both in vitro and in vivo: the crucial role of neural cell adhesion molecule.
نویسندگان
چکیده
BACKGROUND We previously established a mesenchymal stem cell line (FMS/PA6-P) from the bone marrow adherent cells of fetal mice. The cell line expresses a higher level of neural cell adhesion molecule and shows greater hematopoiesis-supporting capacity in mice than other murine stromal cell lines. DESIGN AND METHODS Since there is 94% homology between human and murine neural cell adhesion molecule, we examined whether FMS/PA6-P cells support human hematopoiesis and whether neural cell adhesion molecules expressed on FMS/PA6-P cells contribute greatly to the human hematopoiesis-supporting ability of the cell line. RESULTS When lineage-negative cord blood mononuclear cells were co-cultured on the FMS/PA6-P cells, a significantly greater hematopoietic stem cell-enriched population (CD34(+)CD38(-) cells) was obtained than in the culture without the FMS/PA6-P cells. Moreover, when lineage-negative cord blood mononuclear cells were cultured on FMS/PA6-P cells and transplanted into SCID mice, a significantly larger proportion of human CD45(+) cells and CD34(+)CD38(-) cells were detected in the bone marrow of SCID mice than in the bone marrow of SCID mice that had received lineage-negative cord blood mononuclear cells cultured without FMS/PA6-P cells. Furthermore, we found that direct cell-to-cell contact between the lineage-negative cord blood mononuclear cells and the FMS/PA6-P cells was essential for the maximum expansion of the mononuclear cells. The addition of anti-mouse neural cell adhesion molecule antibody to the culture significantly inhibited their contact and the proliferation of lineage-negative cord blood mononuclear cells. CONCLUSIONS These findings suggest that neural cell adhesion molecules expressed on FMS/PA6-P cells play a crucial role in the human hematopoiesis-supporting ability of the cell line.
منابع مشابه
Extramedullary relapses after allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome.
Hematopoietic Stem Cells Mouse mesenchymal stem cells can support human hematopoiesis both in vitro and in vivo: the crucial role of neural cell adhesion molecule Xiaoli Wang, Hiroko Hisha, Tomomi Mizokami, Wenhao Cui, Yunze Cui, Aiping Shi, Changye Song, Satoshi Okazaki, Qing Li, Wei Feng, Junko Kato, and Susumu Ikehara Myelodysplastic Syndromes Daily practice management of myelodysplastic syn...
متن کاملHuman Wharton’s jelly mesenchymal stem cells-derived secretome could inhibit breast cancer growth in vitro and in vivo
Objective(s): Controversial results have been reported regarding the anti-tumor properties of extracellular vesicles derived from mesenchymal stem cells (MSCs). The present study was conducted to evaluate whether secretome derived from Human Wharton’s jelly mesenchymal stem cells (hWJMSCs) may stimulate or inhibit breast cancer growth in vitro and in vivo.<st...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملSmall Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis
Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs) are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the ma...
متن کاملIn vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Haematologica
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2010